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SUMMARY Reproduction of RNA viruses is typically error-prone due to the infidelity
of their replicative machinery and the usual lack of proofreading mechanisms. The
error rates may be close to those that kill the virus. Consequently, populations of
RNA viruses are represented by heterogeneous sets of genomes with various levels
of fitness. This is especially consequential when viruses encounter various bottle-
necks and new infections are initiated by a single or few deviating genomes. Never-
theless, RNA viruses are able to maintain their identity by conservation of major
functional elements. This conservatism stems from genetic robustness or mutational
tolerance, which is largely due to the functional degeneracy of many protein and
RNA elements as well as to negative selection. Another relevant mechanism is the
capacity to restore fitness after genetic damages, also based on replicative infidelity.
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Conversely, error-prone replication is a major tool that ensures viral evolvability. The
potential for changes in debilitated genomes is much higher in small populations,
because in the absence of stronger competitors low-fit genomes have a choice of
various trajectories to wander along fitness landscapes. Thus, low-fit populations are
inherently unstable, and it may be said that to run ahead it is useful to stumble. In
this report, focusing on picornaviruses and also considering data from other RNA vi-
ruses, we review the biological relevance and mechanisms of various alterations of
viral RNA genomes as well as pathways and mechanisms of rehabilitation after loss
of fitness. The relationships among mutational robustness, resilience, and evolvability
of viral RNA genomes are discussed.

KEYWORDS RNA viruses, evolvability, fitness, mutational tolerance, repair, replication
fidelity, robustness

INTRODUCTION

Replicative systems of RNA viruses are typical error-prone, primarily due to the low
fidelity of their RNA-dependent RNA polymerases (RdRP) and the lack (in the

overwhelming majority of cases) of proofreading mechanisms. Although the extents of
replicative infidelity vary among different RNA viruses, the purified picornaviral RdRPs
generally demonstrate high levels of nucleotide misincorporation, especially in the case
of transitions, which sometimes have a rate as high as �10�4 per site per template
copy (1–6). These values obviously depend on the experimental conditions and do not
necessarily accurately correspond to the real situations in infected cells (which also
vary). Nevertheless, taking into account that, for example, picornaviral genomes consist
of �104 nucleotides (nt), such a level of enzyme infidelity is consistent with the
acquisition, on average, of one mutation by each newly synthesized molecule of RNA
of these viruses. Indeed, a recent study directly demonstrated that genomes of the
progeny of a clone of poliovirus had, on average, more than two mutations each after
merely two passages in tissue culture (7).

Interestingly, such replicative negligence is not an obligatory feature of RdRPs.
Indeed, even a point mutation may increase the accuracy of these enzymes severalfold
(8–12; also see the other references in this paragraph). However, a more faithful
replication may result in a fitness loss by preventing accumulation of adaptive muta-
tions (13–22), although the relationships between fidelity and fitness may differ be-
tween virus-host systems, being influenced in part by the conditions under which the
fitness assay is performed (23–29). Moreover, a decrease in replicative fidelity may also
lead to fitness loss, suggesting that the accuracy of replication of RNA viruses is
naturally fine-tuned (29).

Due to replicative infidelity, populations of these viruses are highly heterogeneous,
i.e., they exist as quasispecies (30–34). Importantly, the level of heterogeneity depends
not only on the intrinsic fidelity of the viral RdRPs but also on the mode of genome
replication (35). Two distinct mechanisms, the “stamping machine” and “geometric
replication” mechanisms, may be operating. The former implies that all the progeny
genomes within a given cell are templated just by the infecting genome(s), whereas the
latter posits that the newly synthesized genomes serve as templates as well, forming
their own distinct “lineages.” Obviously, the heterogeneity of the final harvest of the
infected cell should be much larger in the case of geometric replication and should
depend on the number of genome “generations” in this cell. Specifically, it was
estimated that, on average, 5 generations of poliovirus RNA were produced in a single
HeLa cell under the experimental conditions used (35). The mode of replication and
number of genome generations vary in different virus-host systems, thereby affecting
the size of the space of genome diversity.

In any case, heterogeneous populations are expected to include numerous low-fit or
even dead genomes. Indeed, a severalfold increase in the error rate (leading to the
appearance of a few additional mutations in newly synthesized viral genomes) may
result in a total extinction—“error catastrophe”— of the relevant population (36–41).
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Replicative infidelity may be especially relevant to fitness if it concerns small viral
populations and various kinds of bottlenecks which viruses may encounter. In partic-
ular, such bottlenecks occur when the virus has to overcome various barriers, whether
they are intrahost (e.g., blood-brain barrier and others) or interhost (42–45) barriers. On
the one hand, overcoming various barriers may require a significant level of infidelity,
leading in particular to the generation of adaptive mutations. On the other hand, if after
overcoming such barriers infection is initiated by only a few or even a single low-fit
infectious genome, the newly generated viral population may be more or less seriously
invalidated or deadlocked altogether, a phenomenon known as the Muller ratchet
(46–49).

Notably, bottlenecking effects have an important but very poorly understood
aspect. It is known that a single infectious dose in tissue cultures, e.g., a PFU of
poliovirus, may contain as many as hundreds of virions. Although some of these virions
may carry dead genomes, there is no reason to believe that such genomes constitute
a majority, let alone the overwhelming one. Hence, only a minute minority of the
potentially infectious genomes invading target cells appears to have the chance to
initiate viral reproduction. Very little is known about the nature and factors affecting
this phenomenon, except that the specific infectivity of viruses or viral RNA (number of
virions or RNA molecules able to start productive infection) may vary by several orders
of magnitude, depending on the primary structure of the genome (50–53), and also
varies for different host cells. The number of physical particles needed to avoid a fitness
decrease due to a natural bottleneck is generally unknown, although these values may
be quite relevant.

Notwithstanding these circumstances, RNA viruses demonstrate a remarkable po-
tential for genetic and structural conservation under constant conditions. For example,
sequences of portions of the genomes of several poliovirus strains studied in our lab
(54, 55) turned out to be nearly identical to the sequences of these strains grown
independently for nearly 3 decades in other countries (56–60). Of course, such identity
concerned the consensus (i.e., averaged) sequences. Under natural conditions, the
primary structure of the genomes of RNA viruses undergoes more or less marked
alterations, both neutral and adaptive, but the identity of the virus as belonging to a
distinct type or species is usually retained. Much more rarely, sharp qualitative changes
and generation of new viral taxa may also occur.

Somewhat paradoxically, both genetic conservatism and evolvability are based, to a
significant extent, on replicative infidelity. When, for any reason, new infection is
initiated by a debilitated viral variant, there is often the possibility of regaining the
original fitness through acquisition of reversions or compensatory mutations. On the
other hand, population heterogeneity includes viral variants that, regardless of their
fitness in a constant environment, exhibit enhanced fitness if the population meets
unfavorable conditions, e.g., innate or adaptive immunity, antiviral drugs, unfamiliar
hosts, etc. For example, polioviruses are highly sensitive to the inhibitory effect of
millimolar concentrations of guanidine hydrochloride. However, populations of this
very sensitive virus always contain tiny proportions (depending on the drug concen-
tration tested) of guanidine-resistant (gr) mutants (61), or even mutants whose growth
requires the presence of this drug (62; also see below). The presence of drug-resistant
and drug-dependent variants in largely sensitive populations has also been reported for
other picornaviruses and other inhibitors (63–71). Different variants within heteroge-
neous viral populations may complement each other in performing some functions, as
appears to be the case with poliovirus (10, 14, 22, 32), although the converse situation,
negative trans-dominance of debilitating mutations, has also been documented
(72, 73).

Here we consider numerous ways in which RNA viruses overcome or mitigate
negative effects of their replicative infidelity (and of genome-damaging environmental
factors) and discuss why RNA viruses are remarkably robust despite their replicative
infidelity and why they exhibit a remarkable evolvability despite their robustness. We
focus predominantly on picornaviruses, one of the most extensively characterized viral
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families, but some additional lessons derived from the behavior of certain other RNA
viruses are also considered. The regularities emerging from this analysis seem to be
applicable to RNA viruses in general.

PICORNAVIRUSES AND THEIR GENOMES

Picornaviruses (representatives of the Picornaviridae family) are small (roughly 30 nm
in diameter), nonenveloped, icosahedral animal viruses which are classified into �35
genera, �80 species, and hundreds of types and include pathogens causing important
human and animal diseases, such as poliomyelitis, hepatitis A, common cold, myocar-
ditis, encephalitis, foot-and-mouth disease, and many others (www.ictv.global/report/
picornaviridae). They have a single-stranded RNA genome of positive polarity (i.e.,
translatable) containing �6,700 to 10,100 nt. This genome (Fig. 1A) carries a single
open reading frame (ORF) that encodes a polyprotein, which is eventually processed
into about a dozen “mature” functional proteins. The polyprotein is usually considered
a modular structure composed of the following three parts: P1, containing capsid
proteins VP1 to -4 and, in some viruses, also the leader protein L; P2, containing
nonstructural proteins 2A, 2B, and 2C; and P3, containing nonstructural proteins 3A, 3B
(or VPg, the RNA-priming protein), 3Cpro (protease), and 3Dpol (RdRP) (74, 75). As far as
picornaviral proteomics is concerned, the most striking variability is exhibited by the
nonstructural proteins L and 2A, which are involved mainly (though not exclusively) in
the interaction with cellular innate immunity and generally are not essential for viral
viability. They may be regarded as accessory or “security” proteins (76). Picornaviruses
differ from one another not only with respect to the structure and function of these
proteins but also by having various numbers of distinct molecular species: 0 to 2 for L
(if L*, encoded by another ORF of the genomes of some cardioviruses, is also counted)
and up to 5 for 2A (76, 77).

The genomes of some picornaviruses also have additional, relatively small overlap-
ping ORFs (78–80). In certain cases, the relevant proteins were shown to perform
“security” functions, and it may be supposed that still-uncharacterized such proteins are
mainly dedicated to the same profession. It may also be noted that picornaviruses have
been described in which the proteins characteristic of this viral group are encoded in
two separate ORFs, corresponding to P1 and P2-P3, respectively (81, 82) (Fig. 1B).
Furthermore, enteroviruses of the G species which contain a new gene at the 2C/3A
junction, encoding a predicted papain-like protease similar to that of coronaviruses,
were recently isolated (83, 84). Also, the existence of a potential second ORF down-
stream of the entire main polyprotein-encoding sequence was reported (85). Still
another possible pathway for evolutionary diversification of picornaviruses, genome
segmentation, was demonstrated experimentally (see below). These examples illustrate
the evolutionary potential of picornaviruses.

FIG 1 Schematic representation of the genomes of picornaviruses. (A) Genome of monocistronic (most prevalent)
picornaviruses. The leader L and 2A proteins (shown in red and not to scale) are highly variable in structure and function
and may be dispensable for viral viability. They may be represented by several distinct copies or be absent in a given
genome. The various positions of the replicative cre (oriI) cis-element (hairpins) are indicated. The VPg protein covalently
linked to the 5= end of the viral RNA is shown as a red circle. (B) Genome of dicistronic picornaviruses. The position of cre
is unknown.
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The polyprotein-encoding part of picornavirus genomes is flanked by 5= and 3=
untranslated regions (5= UTR and 3= UTR) containing key cis-elements that vary mark-
edly in structure in different picornaviral genera but perform similar functions, i.e.,
replicative (oriL and oriR; in the 5= UTR and 3= UTR, respectively) and translational
(internal ribosome entry site [IRES]; predominantly in the 5= UTR but also in the
intercistronic region of bicistronic representatives) functions. The functional and struc-
tural features of these elements vary tremendously among different picornavirus
genera (86, 87) (Fig. 2), and it is reasonable to briefly characterize them, especially those
that are considered often.

The �90-nt enterovirus oriL has a cloverleaf-like structure (88, 89) (Fig. 2A). This
element plays multiple roles in viral reproduction, mainly through promoting formation
of a complex ribonucleoprotein (RNP) structure involving several viral and host proteins
(89–93). An essential component of this complex is the viral RdRP (3Dpol), which is
recruited there in the form of its precursor, 3CD, i.e., covalently linked to the viral
protease (3Cpro) (91). This oriL-3CD interaction involves the hairpin domain d of oriL and

FIG 2 Examples of structural variability of the key cis-elements of picornavirus genomes. (A) oriLs of
enteroviruses (as exemplified by this element in poliovirus type I), hepatoviruses (hepatitis A virus),
cardioviruses (mengovirus), and kobuviruses (aichivirus). (B) IRES elements of type I (poliovirus type 1),
type II (Saffold virus), type III (hepatitis A virus), type IV (HCV-like; bat hepatovirus), and type V (aichivirus).
(C) Examples of different oriRs. Thin lines in all panels are used to link distinct structural elements and
are not depicted to scale.
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the 3Cpro moiety of 3CD, as originally demonstrated by Andino et al. (90, 94). The
interaction between these ligands is important for the initiation of the synthesis of both
the viral (positive) and complementary (negative) RNA strands (89, 93, 95–98). It was
recently shown that (at least in the case of coxsackievirus B3 [CVB3]) oriL, which is
required for efficient genome replication, is not indispensable for viral viability: its
removal does not kill the virus but rather decreases the efficiency of its RNA replication
�105-fold (99). It should be noticed, however, that the nonessentiality of oriL has so far
been shown only for this particular virus (see also a reservation at the end of this
section). oriLs of picornaviruses other than enteroviruses exhibit great variability (some
examples are presented in Fig. 2A), but their detailed and functional characterization
has yet to be performed.

Initiation of translation of picornaviral RNA is accomplished via a cap-independent,
IRES-dependent mechanism (100–103). Structures of IRES elements of different picor-
naviruses exhibit remarkable variations (86, 87, 104–110) and are represented by at
least five structural types specific for this viral family or related to the IRES elements of
certain flaviviruses (111, 112) (Fig. 2B). These translational cis-elements serve to bind
ribosomes in order to create conditions for the initiation of translation (87, 107, 113).
This process requires participation of both canonical initiation factors and IRES-specific
(and cell-specific) trans-acting factors (ITAFs) (109, 114).

The structures of picornavirus oriRs are rather variable (86) (Fig. 2C). Even within a
single genus, Enterovirus, there are several distinct structural classes of this cis-element.
In many enteroviruses, it is represented by a multidomain quasi-globular RNA structure
maintained by a tertiary kissing interaction. Polioviruses and other representatives of
enterovirus C species have two stem-loops, X and Y, while enteroviruses of species B
have an additional stem-loop, Z, and human rhinoviruses have a single stem-loop
(115–121). Picornavirus oriRs are polyfunctional (122), being involved in negative RNA
strand initiation (116, 119, 123), polyadenylation of the genomic RNA (124), and control
of translation through (primarily but not only protein-mediated) interaction with the 5=
UTR, which results in noncovalent circularization of the genome (96, 125–130). The
peculiarities of the oriR structures of various enteroviruses are in part responsible for
their cell-specific fitness differences, which are especially prominent in neural cells, a
fact which has direct relevance to viral pathogenicity (131–133).

It is noteworthy that enterovirus oriR, which is conserved and pivotal for efficient
genome replication, is nevertheless not essential, as demonstrated by the viability
(though with a markedly low fitness) of viruses lacking or having a severely damaged
element (118, 123, 124, 134). On the other hand, deletion of a stem-loop of oriR of
mengovirus (a cardiovirus) was reported to be lethal (135).

As mentioned above, in addition to their individual functions, the enteroviral 5= UTR
and 3= UTR appear to interact with one another through the mutual affinity between
proteins to which they bind, which results in noncovalent circularization of the picor-
navirus genome playing an important part in the control of viral translation.

The picornavirus genomes also contain an additional important replicative cis-
element, cre (cis-acting replicative element) (136–138), also known as oriI. It folds into
hairpin-containing structures (139, 140) that are located in different regions of the
polyprotein ORF or in the 5= UTR in different picornaviruses (86, 141) (Fig. 1A). The loop
of its hairpin contains an oligoadenylate sequence which serves as the template for the
uridylylation of the protein VPg (3B) by the viral RdRP (142, 143). The uridylylated form
of VPg, VPgpUpUOH, is the primer for initiation of the synthesis of viral RNA molecules
(144–148). Again, mutational inactivation of cre may not kill the virus but rather
decreases the efficiency of replication of its RNA �105-fold, as reported for CVB3 (149).
Note that oriL and cre elements of enterovirus genomes appear to work in cooperation,
with both responsible for the correct VPg-pUpU-dependent initiation of the positive
RNA strands. The loss of functional cre resulted in deletion of large 5=-terminal portions
of CBV3 oriL and, reciprocally, deletion of oriL (which may occur upon chronic infection
both in cultured cells and in diseased organisms [150–153]) was reported to make
functional cre dispensable (149).
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Picornavirus RNAs also have some additional conserved functional structures, such
as the hairpin inhibiting the host antiviral enzyme RNase L (154, 155) as well as some
other potentially biologically relevant elements with poorly characterized functions
(156–158).

A separate question concerns the role and mechanism of generation of the 3=-
terminal poly(A) tract. This tract is believed to play a role in the preservation of the
genomic end, in particular by association with the poly(A)-binding protein (125, 159),
which promotes the above-mentioned circularization of the viral RNA through protein-
protein interaction. The poly(A) tract is synthesized by using the 5=-terminal poly(U)
sequence in the negative viral RNA strands as the template, which in turn is templated
by the poly(A) segment in the parental positive strand (160). It was noted, however, that
the poly(A) stretches may be markedly longer than the poly(U) ones (161, 162).

Admittedly, great care should be taken in interpreting the observed effects of
various detrimental alterations of viral genomes. Such effects may be modified by the
presence in the investigated quasispecies populations of minute, hardly detectable (by
common sequencing techniques) amounts of different genome variants, which may
serve as complementation or recombination partners. For example, the population of
oriL-truncated CVB3 RNA in human endomyocardial tissue was reported to contain
0.9% molecules with an apparently intact 5= end (153).

CONSERVATION VERSUS EVOLVABILITY

Evolutionary mechanisms serve two opposite goals: to maintain the stability of viral
genomes (to retain their structural and functional identity), on the one hand, and to
allow their evolvability (to ensure their capacity to change), on the other. These operate
mostly under constant and changed environmental conditions, respectively.

So far, no ancient picornaviral RNA genomes from paleontological or archeological
samples are available, and the “ages” of the relevant viral species can be roughly
evaluated only on the basis of comparison of nucleotide sequences of the most distant
representatives of their genomes. Due to inherent limitations of bioinformatics tools
owing to the saturation of the level of nucleotide substitutions and the effects of
purifying selection, they may provide more or less reliable estimates only for relatively
recent time intervals (up to several hundred or thousand years) (163). Given this
limitation, the estimates indicate that picornaviral species may retain their recogniz-
ability for at least centuries (164). On the other hand, taking into account the conser-
vation of the key structural features of their virions and some essential nonstructural
proteins, there is little doubt that all picornaviruses had a common ancestor in the very
far past, i.e., are a monophyletic group whose members diverged through various
qualitative jumps (165).

Mechanisms involved in genome conservation and evolvability are considered
below.

TYPES AND MECHANISMS OF GENETIC MODIFICATIONS

During their life cycle and evolution, viral RNA genomes should cope with various
intrinsic and extrinsic factors potentially capable of disturbing their functions. Adverse
phenotypic effects of a plethora of natural or engineered genetic alterations of viral
genomes are reported in the literature. Only some illuminating examples are consid-
ered here.

Point Mutations

A major source of genetic modifications experienced by the genomes of RNA viruses
is the inaccuracy of their replication machinery, caused by the above-mentioned
error-prone performance of the viral RdRP and the lack (with the exception of a small
set of viruses [see below]) of proofreading capacity. Also, eukaryotic cells possess two
families of nucleotide deaminases: double-stranded RNA-specific adenosine deami-
nases (ADARs), which convert adenosine into inosine (166, 167), and single-stranded
RNA-specific cytidine deaminases (APOBECs), which convert cytidine to uridine (168).
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Although the effects of these multifunctional enzymes on RNA viruses are thus far
focused mostly on different aspects of virus-host interactions (169, 170), their potential
mutagenic effects should not be underappreciated. Such effects of ionizing radiation
and other environmental mutagenic factors should not be ignored either.

Insertions, Deletions, and Replacements

An important class of modifications of RNA genomes is represented by their
rearrangements, i.e., acquisition of deletions, insertions (including duplications), and
replacements of genomic parts by related or unrelated sequences. The rate of gener-
ation of insertions/deletions (indels) during a cycle of picornavirus reproduction ap-
pears to be comparable to that of the appearance of point mutations, as suggested, for
example, by studies on the mechanisms of recovery after adverse alterations of the
poliovirus genome (171, 172). Also, ready accumulation of deletion-containing, so-
called defective interfering (DI) genomes (see below) under certain conditions demon-
strates that such rearrangements are relatively common products of normal reproduc-
tion of RNA viruses. Nevertheless, indels are less common in natural viral populations
due to their removal by negative selection because of generally strong fitness-
impairing effects. These effects may be due to various mechanisms, the most important
being interruption (or shifting) of ORFs, destruction of important protein structures and
RNA cis-acting elements as well as (for long inserts) their A/U content (173), and
limitation in the RNA genome length (174–176).

Genomic rearrangements may be caused by intra- or intermolecular recombination,
and the latter may involve genomes of different viruses with various levels of related-
ness and even cellular RNAs, resulting in such cases in replacements of portions of the
viral genomes by foreign sequences. The key role of such replacements in the evolution
of RNA viruses is most clearly illustrated by the above-mentioned qualitative differences
in the structure of the replicative and translational cis-elements (Fig. 2), shared some-
times by viruses of different families (as is the case, for example, with IRES elements of
some picorna- and flaviviruses).

There are two fundamentally distinct mechanisms of RNA recombination: replicative
and nonreplicative (Fig. 3). The possible existence of these mechanisms was considered
long ago, when appropriate tools for their investigation were not yet available (177–
179). Further studies demonstrated that RNA viruses exploit both mechanisms (180).

Replicative recombination occurs via template switches, whereby a working mole-
cule of RdRP prematurely terminates its elongation; the newly synthesized, uncom-
pleted chain departs from its template and lands on a new template to serve as the
primer for continuation of the synthesis. This is a generally accepted model (54,
181–185), and most recently, it was supported by demonstration of the dependence of
recombination frequency on the fidelity of the viral RdRP (12, 186–188).

Nonreplicative RNA recombination implicates joining of fragments originating from
distinct viral (or cellular) RNA molecules without involvement of the viral RdRP, though
this enzyme is of course required for further copying of chimeric molecules generated
thusly. This kind of recombination was first demonstrated to occur in experiments with

FIG 3 Models of replicative and nonreplicative recombination. See the text for details.
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pairs of segments originating from poliovirus genomes disrupted in either the 5= UTR
or the RdRP-encoding region (189, 190). Subsequently, it was observed in other
picornaviruses (191, 192) as well as in flaviviruses (193–196). As discussed elsewhere
(197), this mechanism may also be responsible for certain earlier observed cases of
recombination between alphaviruses (198) and rubiviruses (199) (both belonging to the
Togaviridae family) and hence appears to be a general phenomenon.

It should be admitted that the mechanistic aspects of both types of RNA recombi-
nation are as yet purely understood. Both replicative and nonreplicative recombination
can generate homologous (precise) and nonhomologous (imprecise) recombinants, but
the nonreplicative mechanism is expected to produce predominantly nonhomologous
ones. Unfortunately, no tools are currently available to learn which of these two
mechanisms is operative during a given case of natural recombination.

Genome Truncation and Disruption

Both termini of viral RNA genomes (and their complementary sequences) are known
to be vulnerable targets for the host cell 5=- and 3=-exonucleases (200). Genome
truncation is usually accompanied by a more or less marked loss of fitness and is a
subject of numerous studies (see below). On the other hand, situations involving
disruptions of viral genomes are very rarely investigated directly due to significant
experimental difficulties. Yet losses of genome integrity are expected to occur often
enough due to several mechanisms, such as activities of defensive antiviral nucleases
(e.g., RNase L) and endoribonucleases involved in RNA interference as well as various
mechanisms of host mRNA decay, including the nonsense-mediated one (200–202).
The involvement of the latter is expected due to the likely presence of stop codons in
the viral quasispecies caused by the infidelity of replication. In addition, environmental
factors, such as ionizing radiation and alkylating agents, may also lead to RNA genome
disruption. UV-induced viral RNA self-cleavage was recently reported (203).

Randomization

Although the randomization of portions of viral RNA genomes is an artificial
intervention, the results obtained with the aid of this approach can be quite relevant
to the topic of this review. There are different reasons for experiments with selection of
viable viruses from pools of viral RNA with randomized segments. If the segments are
relatively short, such experiments can reveal structural features required to ensure
viability of the virus and affecting its fitness. In other words, such experiments may
provide valuable information about the phenotypic effects of a set of point mutations.
On the other hand, randomization of larger genome segments can be regarded as just
the replacement of a functional part of the genome with irrelevant (but not necessarily
inactive [204]) sequences.

(RELATIVE) NEUTRALITY OF VARIOUS MUTATIONS

Although a significant proportion of point mutations in the genomes of picornavi-
ruses (7) as well as various other RNA viruses (205–208) are detrimental, many nucle-
otide alterations are fitness neutral or exhibit relatively mild fitness defects. This ability
to more or less tolerate genetic alterations may stem from different roots. One of the
major ones is the degeneracy of the genetic code. Many nucleotide point mutations in
the protein-encoding regions are synonymous, and synonymous mutations are often
neutral. Remarkably, simultaneous introduction of 1,297 synonymous nucleotide
changes into the poliovirus genome did not appreciably change the viral phenotype
(53). However, the biological equality of synonymous codons has several limitations.

First, synonymous mutations are not necessarily neutral because of the phenotypic
significance of codon (and codon pair) biases, as shown for picornaviruses (50, 51, 53,
209–212), other positive-strand RNA viruses (213–217), and negative-strand RNA viruses
(217–223). These biases may be due mainly to the effects on kinetics of translation (e.g.,
owing to uneven representation of tRNA species corresponding to different synony-
mous codons and to some features of the ribosome machinery [224]). In particular, the
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different rates of reading of synonymous codons affect the dynamics of folding of the
generated proteins (225). In addition, synonymous substitutions in the cis-acting RNA
elements located within the protein-encoding sequences may also exhibit phenotypic
effects (86, 138, 147, 157, 226). The possible involvement of some other mechanisms,
such as the existence of alternative functional ORFs and the relevant frameshifting
signals (78, 227–231) as well as the abundance of CpG and UpA dinucleotides (232–
236), should also be taken into account.

Mutational alterations of amino acids (i.e., nonsynonymous nucleotide substitutions)
do not necessarily result in changed fitness. Even substantial alterations of the chemical
nature of mutated amino acids do not obligatorily cause appreciable phenotypic
changes, as exemplified by the outcome for replacements of certain charged amino
acids by alanine in the 2C protein of poliovirus (237) or for a Val-to-Arg replacement in
the RdRP of mengovirus (238). Similarly, some mutations in the TGK peptide of the
oriL-interacting motif of 3Cpro do not exhibit any appreciable phenotypic alterations, at
least in in vitro experiments (M. A. Prostova, E. I. Smertina, D. V. Bakhmutov, A. A.
Gasparyan, E. V. Khitrina, M. S. Kolesnikova, A. P. Gmyl, and V. I. Agol, unpublished data).
Even prevention of viral polyprotein cleavage at a canonical site may be relatively well
tolerated, as demonstrated with engineered foot-and-mouth disease virus (FMDV)
mutants having amino acid substitutions preventing disruption of the bond between
the VP1 and 2A moieties normally cleaved by the viral 3Cpro protein (239, 240). The 2A
protein of this virus is composed of merely 18 amino acids, and capsids of the viable
progeny of the mutants contained the VP1-2A fusions instead of VP1.

Another important factor contributing to mutational neutrality is the degeneracy of
the spatial RNA structure. Regulatory RNA cis-elements usually are composed of active
parts ensuring specific RNA-RNA or RNA-protein interactions and scaffolding parts
involved in retaining these regulatory parts in the appropriate conformation. These
scaffolding functions can be fulfilled by oligonucleotide elements with different pri-
mary structures. Thus, the secondary structure of the 5= UTR of the circulating polio-
viruses may be conserved despite the acquisition of various point mutations. Moreover,
even active, ligand-interacting moieties of RNA cis-elements can also exhibit some
degree of degeneracy, allowing replacement of a nucleotide by another one without an
appreciable loss of function. This is true, for example, for the 5=-end-adjacent cis-
element oriL of the poliovirus RNA, which, as mentioned above, interacts with the viral
nonstructural protein 3CD. Quite illuminating (and unexpected) results in this respect
were obtained upon the randomization of the apical tetraloop and two adjacent base
pairs of domain d of poliovirus oriL (52). These experiments demonstrated that each
position in the 39 unique sequences of this octanucleotide in 62 investigated viable
plaque-forming viruses could be occupied by any nucleotide (with the exception of one
position, which lacked U), though with certain sequence preferences. A closer look
indicated that the tetranucleotide corresponding to the loop in nearly half of the
isolates fitted the YNMG (Y � U/C, N � any nucleotide, and M � A/C) consensus, and
the spatial structures of the relevant tetraloops are known (241). Certain tetranucleotide
loops of the genomes of several other isolates had sequences compatible with either
a YNUG or GNUA consensus. Some tetraloops with such sequences are known to be
able to adopt YNMG-like conformations as well (242, 243). When genomes with various
YNMG or YNUG tetraloops were engineered, they (and some genomes with GNUA
tetraloops) exhibited wild-type-like phenotypes. Thus, tetraloops able to fold stably into
a YNMG-like spatial structure appeared to be well-accepted partners for their protein
ligands, clearly illustrating that functional degeneracy of spatial RNA structures may
contribute to viral mutational robustness (also see below).

Many experimentally introduced deletions in other parts of the untranslated regions
of picornaviral genomes did not result in appreciable functional deficiencies (244, 245).
Even the entire deletion of two conserved secondary structure domains of the IRES still
did not kill the virus (246).

Various indels in the protein-encoding part of the genome may not be accompanied
by marked fitness losses. Thus, engineered insertions of various foreign functional
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elements, e.g., antigens (e.g., see references 173, 175, and 247 to 258), tags (e.g., see
references 176 and 259 to 264), large structures such as IRES elements creating
bicistronic genomes (265–267), or even IRES elements together with sequences encod-
ing additional polypeptides (268–270), may be relatively well tolerated and not infre-
quently proved to be genetically stable (see below, however). Relatively long deletions
in the C-terminal region of the FMDV nonstructural 3A protein were not accompanied
by any significant phenotypic alterations, at least in vitro (271). Replacements of
octapeptides in an antigenically dominant loop of the FMDV VP1 protein by unrelated
sequences also produced viable and relatively stable viruses (272, 273).

The occurrence of indels that are not markedly harmful has been documented for
noncoding regions of natural picornaviral genomes as well. For example, length
differences of up to several dozen nucleotides were registered for the 5= UTRs (60) and
3= UTRs (274, 275) of closely related representatives of polioviruses and FMDV, respec-
tively. The indels may not be strictly neutral, but if they are associated with some fitness
cost, the detrimental phenotypic changes are likely to be suppressed by some second-
site mutations (see below). In some cases, such indels appeared to even be advanta-
geous, judging by their strong conservation in representatives of a given picornavirus
species, as is the case, for example, with the triplication of the VPg gene in the FMDV
RNA (276, 277) and the duplication of the 5=-terminal cis-element of the bovine
enterovirus RNA (278, 279). Conserved duplications in untranslated and coding RNA
regions of other viruses have been described as well (cf. references 280 to 284).

Notably, replacements of the functional genomic parts by functionally analogous
parts of the genomes of not closely related viruses may sometimes also be relatively
well tolerated, as exemplified by engineered poliovirus genomes with the IRES of
encephalomyocarditis virus (EMCV; a cardiovirus) (117, 268) or human hepatitis C virus
(HCV) (285) in place of their own structurally different IRES.

It should again be noted that the attribution of neutrality to specific mutations has
to be done cautiously. The true neutrality of a given natural mutation and quantitative
estimations of relative fitness are rarely investigated in rigorous experiments. A muta-
tion can be neutral under certain conditions but may be linked to an altered phenotype
under others; host-dependent or cell-dependent mutations are good examples of this.
Thus, a point mutation (A637C) within a double-stranded stem of the type II IRES of
Theiler’s murine encephalomyelitis virus (TMEV; a cardiovirus), while not markedly
affecting the capacity of the virus to grow in nonneural cells, resulted in a several-
orders-of-magnitude decrease in its neurovirulence (286). This attenuating effect was
due to a decreased affinity of the mutated IRES for the neural form of polypyrimidine
tract-binding protein (nPTB) required for efficient initiation of translation of the viral
RNA in these cells. FMDV with an extended (�150 nt) deletion in the replication-
controlling 5=-terminal hairpin of its RNA did not demonstrate any appreciable pheno-
typic changes upon infection of cells with deficient innate immunity but proved to be
highly attenuated in a mouse model (287). Furthermore, a mutation can be truly neutral
within a certain genetic context but may confer an altered fitness within another
context owing to epistasis (288). Also, it was demonstrated recently that certain
synonymous substitutions, while not immediately changing the viral phenotype in
vitro, might markedly diminish the mutational tolerance. Thus, the replacement of Ser
and Leu codons in some genes of CVB3 and influenza A viruses by synonymous ones
more prone to be converted into stop codons by point mutations rendered these
viruses more vulnerable to natural and drug-induced mutagenesis (289).

On the other hand, it is not always correct to consider the mutational loss of the
capacity to trigger an obvious cytopathic effect (CPE) (e.g., a lack of plaque-forming
activity) sufficient evidence for killing of the virus, as usually done. For example, as
already mentioned, complete destruction of the CVB3 replicative element oriL (99) or
cre (149), resulting in a loss of cytopathic activity, is nevertheless compatible with viral
viability: such viruses are able to grow, though with a greatly diminished efficiency,
causing persistent, noncytopathic infections. An FMDV variant that accumulated vari-
ous debilitating mutations during multiple plaque-to-plaque (bottlenecking) passages
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represented another example of conversion of a lytic virus into a noncytocidal one
(290).

NATURAL TOOLS FOR CURING DAMAGED RNA GENOMES

Viruses have evolved a number of efficient tools to cope with the potential genetic
damages caused by the infidelity of their replicative machinery (as well as by other
adverse factors [see references 291 and 292]). One such tool, obviously, is negative
selection resulting in the elimination of less-fit variants. However, this mechanism
cannot ensure the maintenance of genetic stability upon overcoming various bottle-
necks. In these cases, the key roles are played by the rehabilitation tools that are
detailed below, but the most general principle is to “fight fire with fire.” In other words,
the impairments caused by nucleotide substitutions can be counteracted by either
reversions or compensatory second-site mutations, owing again to the infidelity of viral
RdRPs. More extended genetic alterations, such as indels, can be restored or compen-
sated by intra- or intermolecular rearrangements based on RNA recombination. Of
course, recombination may also cure some defects caused by point mutations.

Injured RNA genomes, even if they are dead, as such, may survive for at least some
generations due to complementation, i.e., help provided in trans by proteins (or RNA
cis-elements) encoded by their coinfecting viruses. This mechanism of cooperative
interaction was described long ago for the case of drug-sensitive and drug-resistant (or
-dependent) picornaviruses (293–297), but its wider biological relevance became es-
pecially appreciated after the realization that viral populations are represented by
quasispecies, i.e., swarms of closely related but distinct individuals (10, 14, 32, 73,
298–301). The prolonged survival of impaired genomes owing to intrapopulation
complementation may provide time for their adaptive remodeling, resulting in the
restoration of their capacity for independent existence.

REHABILITATION AFTER ADVERSE CHANGES IN THE UNTRANSLATED REGIONS
OF THE GENOME
5= UTR

As mentioned above, the picornaviral 5= UTRs contain at least two important
functional elements, involved in genome replication (oriL) and translation (IRES), which
exhibit marked structural differences in different representatives of this family. They
may be separated from each other as well as from the downstream ORF by spacers with
various structures and lengths. Although these spacers usually exhibit a marked level of
conservation, their specific functions are so far defined rather poorly. The effects of
adverse modifications of distinct 5= UTR parts are considered separately.

oriL. Generally, enterovirus genomes begin with two unpaired uridines. However,
RNAs of CVB3 and poliovirus lacking these 5=-terminal nucleotides were found to be
infectious and able to restore their wild-type structure (302, 303). The deleted residues
were most likely provided by the VPg-pU-pU primer. However, such a mechanism did
not appear to work with similarly deleted RNA of hepatitis A virus (303).

The poliovirus oriL can sustain various internal alterations without significant func-
tional impairments. This circumstance endows it with a substantial mutational robust-
ness and creates numerous possibilities for rehabilitation through compensatory
second-site mutations should some point mutations inflict an appreciable fitness loss
(52). The rehabilitation is, however, not always complete. Although different apical
tetraloops of domain d potentially able to acquire a YNMG-like conformation are
compatible with viability, they endow different levels of fitness. A likely explanation for
this phenomenon is the dynamic nature of RNA folding, specifically the instability of a
given conformation (caused by thermal motions of constituents) and its existence in
equilibrium with others (304, 305). For a given RNA spatial structure, the time of
existence in a distinct conformation depends on specific nucleotide sequences. Thus,
not all YNMG-like conformations are functionally equal with regard to recognition by
their ligands. A factor underlying this inequality is the proportion of time during which
the element really adopts the conformation recognizable by its ligand (in this case, the
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3CD protein). The fitness of viruses with relatively “poor” YNMG-like folding was
enhanced by mutational “improvements” increasing the probability of adopting the
necessary conformation (52). Moreover, some tetraloops with known non-YNMG fold-
ing (e.g., of the GNRA class) were not lethal but rather quasi-infectious, i.e., no viable
viruses with exactly the engineered inappropriate structures could be recovered upon
the transfection of susceptible cells, but plaques caused by pseudorevertants did
appear upon prolonged incubations. An explanation may consist of the assumption
that even these “incorrect” tetraloops (or, rather, their minute proportions) may acquire
an acceptable conformation (52, 305, 306). A strong, though not fatal, debilitation of
poliovirus caused by inversion of the sequence of stem-loop b of oriL could be partially
ameliorated by spontaneous acquisition of nucleotide substitutions in the loop (117).

Deleterious effects of mutations in the RNA cis-elements may also be restored by
compensatory mutations in their ligands. As originally demonstrated by Andino et al.
(90, 94) and studied in more detail by Prostova et al. (52; unpublished data), harmful
alterations of domain d of oriL may lead to fitness-restoring amino acid replacements
in an RNA-binding motif of protein 3Cpro, in particular by changes of the conserved
tripeptide TGK into IGK, VGK, and some others.

However, if the original debilitating mutation completely prevents the replicative
ability, then there is obviously no possibility for rehabilitation.

IRES. The readiness of reversion of adverse point mutations in the picornavirus IRES
was well illustrated by early studies on the instability of the attenuating mutations in
this element of the Sabin oral polio vaccine (OPV) strains. In the guts of vaccinees, such
reversions occur very often and quite rapidly at positions 480, 481, and 472 in the RNAs
of OPV serotypes 1, 2, and 3, respectively (307–311; reviewed in references 312 to 314),
leading to restoration of their somewhat impaired secondary (for serotypes 1 and 3) or
tertiary (for serotype 2) structures (104, 311, 315) (Fig. 4) and, consequently, transla-
tional activity (316–319) and neurovirulence (308, 315, 320, 321).

Similar deattenuating, fitness-increasing effects could be achieved by second-site
mutations (pseudoreversions) resulting in the restoration of the impaired secondary or
tertiary IRES structure. Wild polioviruses of serotype 1 contain an A480-U525 base pair
that strengthens a double-stranded element (104) (Fig. 4A). As noted above, the Sabin
strain of this serotype has a destabilizing mutation at position 480 (A to G) contributing
to its attenuated phenotype, but this destabilization is not usually conserved in
vaccinees and their contacts. The strengthening of this base pairing might be accom-
plished not only by the reversion (G480A) but also by a compensating pseudoreversion
(U525C) (311, 322), which also resulted in a similar increase in virulence (323) and in
restoration of the in vitro translation efficiency (311). Structural modeling suggested
that G481 of the predecessor of the Sabin-2 strain, strain P712, could potentially
participate in a long-range interaction with C398, supporting the generation of a tertiary
structure element (311) (Fig. 4B). On the other hand, the Sabin-2 strain possesses A481

and U398, which also can pair with each other, suggesting the functional relevance of
this interaction. Nucleotide A481 contributes to the attenuation phenotype of this
vaccine virus, but it readily reverted to G in organisms of vaccinees, which is the event
expected to disrupt the tertiary interaction. However, the potential for formation a
stable C398-G481 pair was regained in most isolates due to the reversion at position 398
as well (234, 311, 322) (Fig. 4B).

In addition, adverse phenotypic effects (e.g., a temperature-sensitive [ts] phenotype)
of attenuating mutations in the poliovirus IRES could be partially (and in a cell-specific
manner) alleviated by amino acid replacements in the nonstructural 2A protein (324),
although the molecular mechanism underlying this improvement is not defined.

Poliovirus IRES (structural type I) (Fig. 2B) also exhibits remarkable plasticity in the
response to debilitating indels. Among its several functional elements, there is a
tandem of an oligopyrimidine (Yn) and a cryptic AUG (located at positions 559 to 563
and 586 to 588, respectively, in the Mahoney strain of serotype 1) separated by the
22-nt spacer (171, 325–327). Engineered poliovirus genomes with 23-nt or 39-nt inserts
or 8-nt deletions in this spacer proved to be quasi-infectious (171, 172). In the case of
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insertions, full or partial fitness restoration was spontaneously achieved in the trans-
fected cells by either deletions resulting in the shortening of the Yn-AUG spacer to a
length close to its natural value or the appearance of a new, noninitiator AUG upstream
of the natural and defunctionalized cryptic AUG, again with a more or less “normal”
distance from Yn (Fig. 5). The fitness recovery of genomes with shortened spacers may
be accomplished in three different ways: acquisition of an insert (e.g., 9 nt); generation
of a new, functional cryptic AUG downstream of the original cryptic AUG and at a
comfortable distance from Yn; or deletion of a large (�150 nt) sequence, resulting in the
appearance of a new, comfortably distanced partner for Yn, the initiator A743UG (Fig. 5).
Interestingly, engineered mutant polioviruses with similar extended deletions proved
to be markedly attenuated in the monkey neurovirulence assay (328).

One approach to investigating effects of heterologous replacements in the IRES
sequence consists of scanning mutagenesis, whereby different adjoining oligonucleo-
tides are replaced by a more or less random oligonucleotide of the same length.

FIG 4 Some attenuating mutations in the IRES elements of Sabin strains and their deattenuation/
reversion. (A) Portion of the secondary structure of the IRES of poliovirus type 1. In the parental Mahoney
strain, the structure is partly stabilized by pairing between nt A480 and U525 (marked in green), while it
is partially destabilized in Sabin-1 by the A480G substitution (red), contributing to the attenuation of
neurovirulence. In the organisms of vaccinees or their contacts, either reversion to A480 or the compen-
satory mutation (pseudoreversion) G525C often takes place, resulting in partial deattenuation. (B) Portion
of the proposed tertiary structure of the IRES of poliovirus type 2. The C398-G481 interaction (green) in the
genome of P712, the wild-type predecessor of Sabin-2, was replaced with U398-A481 (red) in the vaccine
virus. In the organisms of recipients of the vaccine, the deattenuating replacement A481G usually takes
place, accompanied by the reversion at position 398, thereby enhancing the potential for tertiary
interaction.
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Scanning mutagenesis was used to generate 14 octanucleotide replacements in differ-
ent loci of the poliovirus IRES (246). Several of them did not kill the virus, though they
markedly decreased its fitness. Some mutants exhibited a ts phenotype, while some
others, though initially considered noninfectious, were in fact quasi-infectious and
generated viable pseudorevertants upon further passaging. Their “revival” was due to
one or two second-site point mutations in the case of one such mutant and to an

FIG 5 Pathways of rehabilitation after damaging indels in the poliovirus IRES. The wild-type poliovirus IRES (partly
presented in the black frame) has a functionally important tandem of an oligopyrimidine (Yn; green rectangle) and a cryptic
(noninitiator) A586UG (green circle) with a spacer of 22 nt. The initiator A743UG is marked as a red circle. Engineering of
debilitated constructs and selection of well-fit pseudorevertants are indicated by black and green arrows, respectively.
Engineered insertions and deletions are depicted by red and dashed black lines, respectively. Deactivated cryptic AUG and
spontaneously acquired functional cryptic AUGs are shown as yellow and purple circles, respectively. See the text for
details.
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�150-nt large deletion in the downstream region of the 5= UTR in the case of another
(246). The reversions appeared to be host dependent, since the quasi-infectious ge-
nomes generated different sets of pseudorevertants in HeLa and neuroblastoma cells
(329). The latter observation was likely due to distinctive advantages of certain IRES
structures in HeLa and neuroblastoma cells (330–332). Note that the replacement at
positions 585 to 592, destroying an RNA helical structure and the cryptic AUG codon,
generated a large deletion resulting in creation of a tandem of Yn and the initiator AUG,
similar to that illustrated in Fig. 5.

The rehabilitative capacity of the IRES elements of structural type II was studied less
extensively, but the general conclusions were in line with those just described. Desta-
bilization of one of the helices of the IRES of EMCV by a point mutation could be
compensated at least partially by acquisition of the true reversion or second-site
mutations, particularly (but not only) those that restored the stability of the helix (333,
334). The increased fitness of some pseudorevertants of this mutant could be ascribed
to alterations outside the IRES. An apparently compensatory mutation outside the IRES
(in the leader protein) was also discovered upon transfection of a genome containing
a point mutation in an unpaired segment of the IRES, but explanations for the effects
of such second-site mutations are lacking.

Another kind of compensatory mutation concerns the above-mentioned A637C
replacement in the TMEV IRES (286). Although this mutation resulted in a strong
attenuation of neurovirulence of the virus, intracerebral injections of large doses
triggered encephalitis in some mice. The virus isolated from the brains of such animals
contained a mutation, U649C, in a loop of the same module of the IRES. This mutation
increased the IRES-nPTB affinity and restored neurovirulence of the virus (286).

Large insertions between Yn and the initiator AUG of the TMEV RNA resulted in
a significant attenuation of virus neurovirulence for mice (335). The viruses isolated
from the brains of animals that received large doses of mutated viruses and did
succumb to the disease invariably had acquired either deletions or a new AUG-
generating mutation, both adjusting the Yn-AUG distance to a more comfortable
(closer to the wild-type) value, resembling the above-described results with the
poliovirus IRES of structural type I.

5= UTR spacer. The oriL and IRES in various picornaviruses may be separated by
conserved spacer sequences with poorly defined functions. Their alterations might also
lead to adverse fitness effects, which may be ameliorated by second-site mutations.
Thus, a 4-nt insert at position 220 of the 5= UTR of Sabin-1 poliovirus resulted in a
small-plaque phenotype, but different large-plaque variants were selected after pas-
sages (244). The fitness gain was accompanied in each case by the acquisition of two
second-site point mutations in different regions of the 5= UTR, obligatorily including
one of the two above-mentioned deattenuation mutations, at position 480 or 525. A
strong ts phenotype caused by a 4-nt deletion at the same locus could be ameliorated
spontaneously by enlarging this deletion to 41 nt (336).

3= UTR
oriR. Complete or partial deletions of the picornaviral oriR may result in a marked

suppression of genome replication at normal or supra-optimal temperatures. These
adverse effects may be ameliorated, at least partially, upon passage of the mutants.
Thus, an 8-nt insert in the poliovirus 3= UTR resulted in ts viruses, from which ts�

revertants were selected (337, 338). The phenotypic improvement was accompanied by
deletions of 7 or 8 partly original, partly inserted nucleotides (in different isolates, this
resulted in four distinct but closely related structures) and by an additional point
mutation in some of them. A 14-nt deletion of a stem-loop of the structurally different
oriR of mengovirus led to a quasi-infectious genome (135). A partial compensatory
effect was achieved by an amino acid substitution in the viral RdRP, perhaps through
increasing its affinity for oriR. If so, this pseudoreversion gives another example of
compensation of a mutation in an RNA cis-element by alteration of its protein ligand.
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An even stronger fitness-increasing effect resulted from natural acquisition of a com-
bination of this RdRP mutation with a mutation at another 3= UTR position (135).

Debilitating effects of various disruptions of the tertiary kissing interactions between
stem-loops X and Y of the coxsackievirus A-9 (CAV9) oriR (Fig. 2C) could be compen-
sated, at least partially, by the natural nucleotide substitutions restoring this interaction,
including a variant in which the kissing interaction was shifted by 1 nt (120). Interest-
ingly, disruption of certain single base pairs in the kissing interaction of the CVB3 oriR
may kill the virus (119), whereas more extensive destabilization of this interaction led
to quasi-infectious genomes which, after a relatively long period of marginal replica-
tion, could increase (though far from completely) their fitness through either a single-
nucleotide insertion, allowing an alternative, sufficiently strong kissing, or, unexpect-
edly, the complete loss of the X and Y domains (124) (Fig. 6).

Poly(A). A set of poly(A)-lacking CVB3 genomes with either plain poly(A) deletion or
such a deletion together with removal or randomization of the entire oriR, or with the
replacement of poly(A) with other homopolymeric sequences, proved to be viable
(124). The recovered viruses contained a variety of 3=-terminal sequences, all ending
with the regenerated poly(A) sequence. The genome of a virus recovered after trans-
fection with the 3= UTR-lacking RNA terminated with UAGUCGAn, where the doubly
underlined triplet is the translation termination codon of the polyprotein ORF and the
singly underlined one is from engineering. Normally, poly(A) is templated by the
5=-terminal poly(U) sequence of the viral negative RNA strand, which in turn is synthe-
sized by copying the poly(A) sequence of the viral genome, but in this case the latter
was absent. It is possible that the polyadenylation was accomplished by the terminal
adenylyltransferase activity of the viral RdRP, which was demonstrated to exist in the

FIG 6 Example of rehabilitation of a picornavirus by the loss of an important RNA cis-element. Functional replicative activity of oriR
of the coxsackievirus B3 genome requires a tertiary (kissing) interaction between its X and Y domains. Mutational alteration of 4 nt
in the loop of domain X (shown in red) destroyed this interaction and rendered the viral genome quasi-infectious. A significant fitness
gain could be achieved by the spontaneous destruction (rather than repair) of oriR through the deletion of domains X and Y. The
termination codon of the polyprotein ORF, UAG, is underlined.
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RdRP of a related poliovirus (339). It also cannot be ruled out that poly(A) was supplied
(before the onset of replication?) by a still-undefined cellular mechanism. In any case,
the virus was able to survive even such a severe trauma.

An interesting evolutionary trajectory exhibited another engineered genome termi-
nating in the poly(A)-lacking ORF-N111-UCGA sequence (where N111 is a randomized
RNA segment) (124). The genome of the virus recovered after transfection was termi-
nated with ORF-N111-UCGAGAAU13AAUAAAAn. Thus, the virus acquired, in addition to
poly(A), an AU-rich segment (shown in italics) which contained the AAUAAA cellular
polyadenylation signal (underlined) and could be involved in the initial polyadenylation
of the engineered genome. The origin of this segment is unknown, but it possibly came
from a cellular RNA, e.g., the casein kinase II mRNA, by recombination (replicative or
nonreplicative). After further passages, the additional fitness gain was accompanied by
further transformation of the genome, which, after 10 passages, acquired a 30-nt
segment of the cellular hnRNP U mRNA. Again, recombination was likely responsible for
this acquisition. Reappearance of the poly(A) sequence in the engineered tailless
genome of hepatitis A virus (having an entirely different oriR structure) was also
reported (340).

The results described above again illustrate the diverse tools allowing even severely
damaged RNA viruses to significantly or completely regain their fitness.

REHABILITATION AFTER ADVERSE CHANGES IN THE INTERNAL REPLICATIVE CIS-
ELEMENT cre (oriI)

A marked inhibition of poliovirus and FMDV genome replication caused by disrup-
tion of one or two base pairs in the stems of their cre elements could be restored by
one or two naturally occurring second-site mutations, respectively, resulting in the
reestablishment of the helical structure (138, 341, 342).

An exceptional and surprising case of true reversions of a set of 16 point mutations
in the cre of the engineered RNA of CVB3 was recently published (343). This set was
previously reported to be lethal, judging by the inability of the modified genome to
induce detectable CPE in transfected cells (147). However, these mutations did not
appear to kill the virus, which was still able to replicate in HeLa cells and in some organs
of mice, though �105-fold less efficiently, and was able to trigger persistent (noncy-
topathic) infection (149). After 8 days of morphologically unapparent reproduction,
reversion of all 16 mutations was detected. Strikingly, no intermediates with only some
of the reversions could be detected on previous days, implying that only complete
reversion endowed the virus with the ability to win the competition with the mutated
variants. The genome of the revertant lacked a number of 5=-terminal nucleotides (i.e.,
part of oriL), which were lost before the complete set of reversions had been acquired.
The mechanism of the structural recovery in this case is unknown, but the possibility
that the reversion occurred through recombination with a cryptic, independently
noninfectious but intact-cre-element-carrying genome which was present in the qua-
sispecies population should be considered.

REHABILITATION AFTER ADVERSE CHANGES IN VIRAL PROTEINS

The Sabin OPV strains contain attenuation mutations not only in their IRES elements
but also in the encoded proteins (321, 344–347). Some of them are known to readily
revert in vaccinees or during subsequent transmission, resulting in the restoration of
viral fitness (reviewed in references 312 and 313). Since such attenuating mutations are
differently located in the genomes of the three OPV serotypes, the possibility exists to
replace genomic segments containing such mutations with fitness-enhancing homol-
ogous segments from another serotype present in the trivalent OPV, endowing recom-
binants with selective advantages. Indeed, recombination between OPV serotypes is
quite common (310, 348–352). The pattern of distribution of the crossovers in a large
set of such intertypic vaccines/vaccine recombinants allowed us to propose the exis-
tence of serotype-specific “weak” (fitness-decreasing) regions which are strongly se-
lected against (353). Intriguingly, the locations of these regions may not necessarily
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correlate with the locations of the known attenuating mutations, raising questions
about the nature of their apparent weakness. It may be added that the Sabin strains can
recombine with wild polioviruses and other viruses belonging to the enterovirus C
species (354–358), although the resulting fitness alterations are not yet adequately
characterized.

An unusual case of reversion of a debilitating mutation in the poliovirus 3AB protein was
described by de la Torre et al. (359). The engineered C-to-U transition resulting in the
Thr67Ile substitution in this protein was accompanied by acquisition of a strong ts pheno-
type. The reversion of both the nucleotide and the phenotype was accomplished by
passaging the mutant at the permissive temperature (33°C). Unexpectedly, three other
synonymous mutations (introduced into the investigated genome as markers) also reverted
to the wild type in the majority of the revertants. No intermediate genomes possessing only
some of these synonymous mutations were detected, to some extent mimicking the
above-described collective reversion in the cre element. Again, the involvement of recom-
bination with a cryptic wild-type sequence cannot be ruled out.

Structural and functional impairments of a viral protein may be suppressed by
second-site mutations. For example, the progeny of a CVB3 genome with an Asp24Ala
mutation in the 3A protein acquired either the true reversion or second-site mutations
at position 41 of this protein, restoring its dimerization capacity (360). Invalidation of a
viral protein can also be compensated by changes in another viral protein involved in
the interaction with the affected one. Thus, certain engineered replacements in protein
2C severely suppressed the production of infectious poliovirus due to impairment of
the encapsidation mechanism. However, the fitness was spontaneously restored by
either second-site mutations in 2C itself or compensatory mutations in its presumptive
ligand, the capsid protein VP3 (237, 361, 362). Fittingly, some FMDV mutants with an
alteration of the capsid maturation pathway caused by impaired cleavage at the VP1-2A
border were reported to acquire mutations in 2C (240).

Still other rehabilitation variants are exemplified by a poliovirus with a 3-nt insert close
to the 3= terminus of the 3Cpro coding sequence, resulting in apparently complete sup-
pression of viral polyprotein processing at a single cleavage site and rendering the viral
genome quasi-infectious (363). Two types of pseudoreversions were detected. The RNA of
one recovered virus contained point mutations in both the 3Cpro and 3Dpol coding
sequences and also lacked the inserted trinucleotide, whereas this insert in the genome of
the other revertant was, surprisingly, replaced by a 15-nt fragment of the rRNA.

It was also demonstrated that relatively short fitness-decreasing inserts generated
by nonhomologous replicative and nonreplicative recombination could subsequently
be removed by homologous recombination (190, 191, 364, 365).

Postdamage rehabilitation may involve one or more intermediates exhibiting dif-
ferent levels of fitness. Thus, a 12-nt insert in the 2C coding region of poliovirus RNA
resulted in the acquisition of a ts phenotype (366). A pseudorevertant able to grow
efficiently at the supra-optimal temperature was shown to have two second-site
substitutions in 2C. However, this alteration was accompanied by another phenotypic
change: reproduction of the virus became cold sensitive. Remarkably, the harvest of the
original ts mutant also contained still another pseudorevertant exhibiting temperature
dependence similar to that of the wild-type virus. Its 2C coding sequence contained the two
mutations present in the cold-sensitive variant and an additional second-site amino acid
change, strongly suggesting that it originated from the intermediate cold-sensitive virus
(367).

Thus, many adverse amino acid alterations and short indels in poliovirus proteins
(and, by implication, those of other picornaviruses) appear to be readily curable by
using different rehabilitation mechanisms.

REHABILITATION AFTER LARGE INDELS AND REPLACEMENTS

True spontaneous reversions of large indels may be expected to occur relatively
rarely. Nevertheless, an impressive case of very rapid (one cycle of reproduction) and
precise deletion of a genomic insertion was observed upon transfection with poliovirus
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RNA possessing a tandemly duplicated VPg (3B) gene (368). The specific infectivity of
the two-VPg RNA was several orders of magnitude lower than that of its wild-type
counterpart, indicating that the insertion was nearly lethal. However, progeny of this
debilitated genome exhibited the wild-type (i.e., single-VPg) RNA structure, with the
3=-proximal copy of the VPg gene precisely eliminated, perhaps by homologous intra-
or intermolecular recombination. Why just the 3=-proximal copy was deleted is un-
known. Interestingly, deletion of “additional” copies of the naturally triplicated FMDV
VPg gene resulted, in contrast, in a significant fitness loss or death (369).

Though, as noted above, some engineered insertions encoding various useful
experimental tools were reasonably well tolerated and proved to be relatively stable,
genetic instability and loss of fitness of viruses with some similar inserts were also
demonstrated. For example, insertion of several-hundred-nucleotide sequences encod-
ing green fluorescent protein (GFP) or the Gag protein of human immunodeficiency
virus between the 5= UTR and the polyprotein ORF of poliovirus generated either
quasi-infectious or low-fit progeny (174). Similar results were obtained after insertion of
the luciferase gene at the same position of the RNA (370). These and some other useful
engineered inserts were sometimes lost even upon the first passage. The loss was
usually imprecise, resulting in distinct partial deletions suggestive of nonhomologous
recombination events, and in certain cases, more than one such event may have been
involved. The fitness of the partially repaired populations was markedly increased
(though not to the wild-type level) after several passages due to the selection of
less-damaged variants. More or less similar results were obtained in other studies as
well (257). It should be kept in mind that the expression of a foreign sequence may not
necessarily be due to the genetic stability of constructs but may also be due to the
intrapopulation complementation of defective genomes (371).

A class of genomes with naturally occurring extended deletions, so-called defective
interfering (DI) genomes, has long been known for many RNA viruses (372–374; for
some recent references, see references 375 to 385). For poliovirus, DI genomes are
present as a minor component in regular laboratory stocks, but their abundance can be
increased significantly upon passage at a high multiplicity of infection (MOI). The
deletions usually map to the region encoding capsid proteins and may affect a
significant portion of this region (386, 387). Although DI genomes are unable to
produce viral particles due to a deficit of capsid proteins, they may be endowed with
efficient replicative capacity and may not only ensure self-multiplication but also both
interfere with viral growth (as their name implies) and provide some replicative proteins
in trans, thereby assisting reproduction of mutant genomes with impaired replicative
functions (371). It is reasonable to assume that similar deletions may spontaneously
occur in other parts of the viral genome at comparable rates, but since the resultant
viruses are replication deficient, they may escape detection. At least some of them may
retain replicative capacity owing to complementation by their coreplicating full-length
or defective quasispecies members and thus may participate in genetic exchanges. If
so, they may provide an additional source of novel genetic material because they may
undergo independent, less-constrained evolution. A remarkable illustration of their
evolutionary potential was provided by experimental conversion of FMDV into a virus
with a bipartite genome. Multiple (�200) tissue culture passages of this virus at a high
MOI resulted in the generation of a complex population containing DI genomes with
deletions in different genes (388). Due to their mutual complementation, a combination
of DI genomes may be propagated at a high MOI in the absence of nondefective
helpers, producing lytic infections. Notably, the population with the bipartite FMDV
genome demonstrated a higher fitness than that of the parental virus with unseg-
mented RNA, apparently due to a higher stability of virions encapsidating smaller RNA
molecules (389), and certain point mutations accumulated because of the infidelity of
RNA replication (390). These observations demonstrated that genome segmentation
may represent a mechanism for fitness recovery after genome damages and suggested
a model for the origin of picorna-like viruses with a segmented genome (such viruses
do indeed exist [391]).
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Rehabilitation of fitness impairments caused by deletions in a nonstructural protein
may sometimes be accomplished by the acquisition of compensatory mutations in
other nonstructural proteins, as exemplified by the restoration of the replicative
efficiency of an FMDV mutant lacking a significant part of its 3A protein by a point
mutation in 2C (392).

Replacements of genomic regions, which may occur through recombination, are
usually regarded as an evolutionary tool for adapting to new or unfavorable conditions
or eliminating fitness-decreasing genetic changes (186, 280). However, they may also
result in debilitation, and in certain cases such debilitation can be the goal of experi-
menters. An illuminating example is a poliovirus with the entire IRES exchanged for its
counterpart from human rhinovirus type 2 (HRV2) (393). Such viruses, while retaining
their poliovirus-like capacity to grow in nonneural human cells, exhibited a strong ts
phenotype, rendering them highly inefficient at 37°C in neural (and murine) cells (393,
394). As a result, the chimera proved to be highly attenuated with respect to neuro-
virulence. The marked interest in such viruses is due to their excellent oncolytic
properties, making them quite promising tools for treatment of human tumors of glial
origin (395, 396). However, passages of these viruses in neural or murine cells under
restrictive conditions resulted in partial recovery of their ability to grow at 37°C due to
different sets of mutations, typically including 12- or 13-nt deletions just preceding the
IRES as well as certain point mutations within the IRES (394). It was suggested that these
modifications enhanced the capacity of the IRES to interact with cell-specific ITAFs,
thereby optimizing the efficiency of translation.

In contrast to the poliovirus/HRV2 chimera, replacement of the CVB3 IRES with its
counterpart from HRV2 did not result in a marked growth deficiency in neural cells
(132). This phenotypic difference appeared to depend on the structural dissimilarity of
the poliovirus (enterovirus C) and CVB3 (enterovirus B) oriR regions (Fig. 2C). When
stem-loop Z of the CVB3/HRV2 recombinant was deleted (i.e., when the CVB3 oriR was
converted into a poliovirus-like one), the capacity of the mutant to grow in neural cells
was severely impaired, indicating a functional interdependence of the IRES and oriR.
However, genetic determination of the phenotypic properties of these chimeric viruses
was more complex. When CVB3 lacking stem-loop Z but possessing the HRV2 IRES was
passaged in neural cells, its deficiency for growth in these cells was partially amelio-
rated due to either mutations in the viral nonstructural proteins 3A/3AB or these
mutations in combination with mutations in 3Cpro/3CD (397). This observation indicates
the existence of a complex network of functional interactions (epistasis) between
different parts of the viral genome, i.e., the IRES, oriR, and several nonstructural
proteins, and the possibility to exploit this network for the rehabilitation of genetic
injuries.

A different path of rehabilitation after the damaging effect of IRES exchanges was
observed when the CVB3 IRES was replaced by a homologous (and structurally similar)
region of echovirus 12. This chimera also exhibited a severe host-specific ts phenotype
(398). A pseudorevertant of this virus could be selected which regained its fitness
through 3 mutations in the IRES, which were suggested to alter its secondary structure.

The above examples illustrate phenotypic improvements of genomes in which
exchanges were done between IRES elements of the same structural type (type I). The
replacement of the poliovirus IRES by the structurally unrelated IRES of HCV resulted in
viable but small-plaque-forming chimeras (285, 399). Passaging one of these viruses
resulted in a marked gain of fitness due to selection of mutants with a point substi-
tution or a deletion in the foreign IRES, ensuring its better compatibility with the
poliovirus oriL (399).

A poliovirus genome in which an extended part of the 5= UTR (nt 220 to 627) was
replaced with the relevant sequence from CVB3 RNA exhibited a ts phenotype. How-
ever, the wild-type level of fitness was regained through spontaneous deletion of 4 nt
(positions 231 to 234, i.e., preceding the IRES) (400). For another chimera, in which a
220-nt 5=-terminal segment of CVB3 RNA was replaced by its poliovirus counterpart,
reproduction in HeLa cells was suppressed but was restored after the deletion of a
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tetranucleotide in the same locus (positions 232 to 235) (401). This genome also
demonstrated a low fitness in simian cells which, however, was improved upon
passaging by the acquisition of two additional second-site mutations. The mecha-
nism(s) underlying these impairments/rehabilitations is unknown.

Important results were obtained with engineered mosaic genomes encoding pro-
teins derived from different viruses. A chimera in which the capsid-encoding part (P1)
of CAV20 was replaced by its poliovirus analog proved to be quasi-infectious, and its
pseudorevertant small-plaque-forming genomes had acquired single point mutations
in either the capsid VP3 or nonstructural 2C protein (370). The combination of these
two mutations restored the fitness to a nearly wild-type level. The defect in the original
chimera was traced to impaired encapsidation of the viral RNA, strongly supporting the
role of the VP3-2A interaction in this process (402).

The above examples again demonstrate the multitude of potential trajectories
leading to the improvement of the decreased fitness of injured RNA genomes. Al-
though most of these results were obtained by genetic engineering, natural generation
of such chimeras is also quite likely.

REHABILITATION AFTER GENOME DISRUPTION

It seems likely enough that fragmentation of viral RNA resulting from either nucleo-
lytic cleavage or incomplete copying is not infrequent during viral reproduction, but
there are no reliable tools to detect, let alone investigate, the fate of the relevant
fragments. In any case, RNA fragments that are large enough may serve as recombi-
nation partners not only to help the recovery of the disrupted viral genomes but also
to fuse with sequences coming from different viruses, or even from viral and cellular
RNAs (363, 403–405), thereby contributing to viral evolvability.

DEVELOPMENT OF RESISTANCE TO MUTAGENIC AND SOME OTHER INHIBITORS

Although development of viral resistance to inhibitors and rehabilitation after
debilitating mutations are formally different topics, the molecular mechanisms under-
lying these two processes have many common features, since the escape from inhib-
itory effects of antivirals in some respects mimics restoration of viral functions inflicted
by mutations. This is especially true for viral mutagenic inhibitors. Recently, much
attention was paid to ribavirin, a purine nucleoside analog which efficiently suppresses
a variety of RNA (and DNA) viruses and is widely used in clinical practices (406). A key
but not sole mechanism of its activity is its incorporation (after phosphorylation of the
respective triphosphate by host enzymes) into viral RNAs by the viral RdRP, mainly in
the place of guanosine.

During the synthesis of positive and negative viral RNA strands, ribavirin pairs nearly
equally well with cytosine and uracil, resulting in G-to-A and C-to-U mutations, respec-
tively, in viral RNA genomes. Due to accumulation of multiple mutations, incubation of
virus-infected cells with this inhibitor may result in complete inactivation of the newly
synthesized viral genomes (“error catastrophe”) (41, 407–409). However, after multiple
passages of poliovirus in the presence of the drug, ribavirin-resistant mutants were
isolated, and the mutation responsible for the resistance was traced to 3Dpol replace-
ments, originally Gly64Ser in the case of poliovirus (8). The resistance was due to a
significant increase in the fidelity of the mutated polymerase, which became more
reluctant to use the inhibitor as a substrate.

Passaging other picornaviruses, such as CVB3 (410), enterovirus 71 (18), and FMDV
(26, 411), in the presence of ribavirin or other mutagenic inhibitors (e.g., 5-fluorouracil
[FU] or azacytidine) also resulted in the selection of mutants with altered properties
(primarily increased fidelity) of the viral RdRP owing to mutations in different loci of the
enzyme. Cross-resistance to these inhibitors was also demonstrated (also see a relevant
study with HCV [412]). Thus, the rehabilitation of the functionally inefficient genome in
the case of mutagenic inhibitors was facilitated just by their mutagenic effect.

RdRP-dependent resistance to a mutagenic inhibitor can be achieved not only
through an increase in the general fidelity of this enzyme but also through more
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fine-tuned changes in its properties (413). Viral replication in the presence of the
pyrimidine analog FU is usually accompanied by the accumulation of A-to-G and U-to-C
transitions. However, a particular FU-resistant (or rather FU-dependent) FMDV mutant
encoded an RdRP with a point mutation able to specifically counteract the acquisition
of just these transitions without markedly changing the mutant spectrum complexity in
the viral progeny.

The acquisition of resistance to a mutagenic inhibitor may also be accompanied by
resistance to inhibitors with different modes of action. Thus, a ribavirin-resistant mutant
of CVB3 with a point mutation in the RdRP was also resistant to amiloride (410). The
latter drug is not mutagenic but rather affects the intracellular ionic environment. It can
be concluded that mutations altering RdRP fidelity may also modify some other
properties of this enzyme.

Let us briefly consider the acquisition of resistance to some nonmutagenic inhibi-
tors, which is also due to a single or a few point mutations. The above-mentioned
guanidine-resistant (gr) poliovirus mutants are a typical example. The drug targets the
viral multifunctional protein 2C (414–418), which possesses an RNA-dependent NTPase
activity (419, 420) and, in particular, is hypothesized (though not proved) to function as
an RNA helicase (421–423). Both gr and guanidine-dependent (gd) classes of mutants
display a wide range of phenotypes with different levels of dependence of reproductive
efficiency on the guanidine concentration (416, 424). The mutants differ with respect to
not only the tolerable concentration of the drug but also whether the virus is truly gr

(i.e., able to grow equally well in the presence and absence of the drug) or gd

(obligatorily requiring the drug for efficient reproduction). As expected, gr and gd

mutants display some genetic variability within each class. A comparison of our results
(418) with those reported by others revealed certain regularities.

The overwhelming majority of mutants with altered guanidine sensitivity possessed
one of two amino acid replacements in the 2C protein (never both): either Asn179 was
changed to Gly or Ala, or Met187 was replaced by Leu (for brevity, these mutants
belonged to the N or M class, respectively). These mutations are located in the 2C
regions thought to be involved in interactions with ATP. Some gr mutants of the N class
and at least one gd mutant of the M class did not have any other 2C mutations, but the
majority of mutants had additional replacements in other regions of this protein, likely
associated with phenotype modulations. Some viruses also contained mutations out-
side 2C. The acquisition by wild genomes of even a single mutation of the N or M class
might sometimes require alterations of two nucleotides (due to the properties of the
genetic code). Nevertheless, the presence of more than one mutation does not
necessarily mean that multiple consecutive steps were required for the acquisition of
altered drug sensitivity, because mutants may well originate from representatives of
the quasispecies population with sequences different from the master (prevalent) one.
In any case, this set of data clearly demonstrates a multiplicity of trajectories which may
allow inefficient genomes to reach fitness peaks.

Interestingly, the same point mutation in FMDV 2C (I268T) confers resistance not only
to guanidine (68) but also to ribavirin, ameliorating the mutagenic effect of the latter
(425).

It goes without saying that there are a great variety of viral inhibitors with other
mechanisms of action and resistance (for example, see reference 426), but a more
detailed consideration of the problem of viral drug resistance is outside the scope of
this review.

RECOVERY AFTER DEBILITATING BOTTLENECKING

The quasispecies nature of viral populations predicts that various bottlenecking
events, which regularly occur during viral replication within organisms and during
interhost transmission (43), may often result in more or less significant fitness losses
owing to the probability of the presence of adverse mutations in the transmitted
genomes (the Muller ratchet). The rehabilitation of RNA viruses after damaging bottle-
necking may exploit all the above-discussed mechanisms of regaining fitness, but
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specifically, this phenomenon in picornaviruses was first studied experimentally by
multiple consecutive plaque-to-plaque passages of FMDV (427). This procedure re-
sulted in various levels of fitness losses due to different mutations in different lineages.
A low fitness of one of the victims of this ratchet was associated with several point
mutations scattered over the genome as well as with a significant extension (hetero-
geneous in length but, on average, 28 nt long) of a penta-adenylate in the N-terminal
region of the polyprotein ORF (428). When this invalidated virus and its four plaque-
purified subclones were subjected to serial passages in susceptible cells at different
MOIs, they regained their fitness to different extents but, remarkably, exploited differ-
ent pathways to achieve this. The internal An stretch of the genome was invariably
corrected either by true reversion to the original A5, by its shortening, or by an
extended deletion of 69 nt that included it. In addition, separate lineages exhibited
different sets of true reversions and novel point mutations (including single nucleotide
deletions). These observations again illustrate how debilitated viruses can reach differ-
ent fitness peaks by wandering along individual trajectories.

Notably, even more prolonged plaque-to-plaque transmission did not lead to
complete extinction of the FMDV populations (290, 429), suggesting that the natural
level of replicative infidelity of this virus is finely tuned to ensure prevention of error
catastrophe under such conditions.

SOME ADDITIONAL LESSONS FROM OTHER RNA VIRUSES
Positive-Strand RNA Viruses

As we have seen above, a key factor influencing the rehabilitative capacity of
damaged picornavirus genomes is the infidelity of the viral replicative machinery. As far
as other viruses with positive-strand RNA are concerned, relatively high (�10�4) and
low (�10�6) error rates have been reported for bacteriophage Q� and coronaviruses,
respectively (430–432). These levels may vary even among different representatives of
a particular species (433). The variability depends not only on the peculiarities of the
RdRPs but also on the properties of other nonstructural proteins. Thus, the fidelity of
alphavirus replication is also modulated by mutations in the helicase/protease (nsP2)
(434). Remarkably, the Nidovirales (with the exception of arteriviruses) exhibit a capacity
for correcting replicative nucleotide misincorporation that is apparently unique among
RNA viruses and is due to the possession of a 3=-to-5= exoribonuclease, the nonstruc-
tural protein nsp14 (433, 435–438), which functions in cooperation with another
nonstructural protein, nsp10 (439, 440). A decrease in severe acute respiratory syn-
drome (SARS) coronavirus fidelity due to inactivation of this exoribonuclease was
accompanied by a significant loss of viral fitness (441).

The recombination frequency varies as well, for example, being relatively high in
nidoviruses (442–445) and rather low in flaviviruses (185, 446). Like the situation with
picornaviruses, this frequency in other RNA viruses depends on the fidelity of the RdRP
(381). On the one hand, low error and recombination rates endow viral genomes with
a greater stability, but on the other hand, they diminish their capacity for recovery in
the case of damage.

Numerous studies have demonstrated the importance of recombination for the
rehabilitation of debilitated positive-strand RNA plant viruses (184), and only some
examples are considered here. A segment (RNA3) of the tripartite RNA genome of the
cowpea chlorotic mottle virus (a bromovirus) encodes two proteins. Two variants of this
segment were constructed, with deletions inactivating one or the other of these
proteins. When plants were coinoculated with both deletion variants and intact RNAs
1 and 2, the altered RNA3 was regenerated by recombination (447). The genome of a
tobacco etch virus (a potyvirus) with engineered insertions of either its own genes
(duplication) or foreign genes (pseudogenization) demonstrated either severe debili-
tation or even apparent death. However, passages of these low-fit mutants resulted in
a more or less rapid enhancement of their reproductive (and competitive) capacity due
to the removal of the inserts (448, 449). Inactivating indels in the replicase (i.e., RdRP)
gene of phage Q� could be repaired by homologous recombination, with the intact
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gene provided in trans by a resident plasmid (450), implying that rehabilitation of even
such severe disturbances may occur under natural conditions as well.

In RNA viruses with non-IRES-dependent initiation mechanisms, recovery from
significant translational defects may be based on different paths. For example, an
engineered 19-nt deletion affecting the hairpins controlling translation of the MS2
phage capsid protein could be ameliorated, upon passages in Escherichia coli, by either
deletion of 6 more nucleotides, acquisition of an unrelated 18-nt insert, or both
modifications, creating novel functional regulatory structures which included the
Shine-Dalgarno sequence (451). A special case of mutational robustness was recently
discovered in nidoviruses (452). Proteins of these viruses are largely translated from
subgenomic mRNAs (sgRNAs), and the synthesis of each sgRNA is controlled by a
distinct cis-element (TRS). By using deep sequencing, numerous overlapping sgRNAs
controlled by different TRS were found to encode a given viral protein. This redundancy
ensures continued protein synthesis in the case of mutational inactivation of a TRS.

Various molecular mechanisms are operative in nonpicornaviral RNA viruses to
repair or compensate for debilitating alterations of their genomic ends. Different
pathways for rehabilitation after adverse modifications of the 5= UTR were demon-
strated for Venezuelan equine encephalitis virus (VEEV) or, more precisely, a chimera of
VEEV with Sindbis virus (453). The 3= end of the viral negative RNA strand (serving as
the promoter for the synthesis of the positive strand) has a terminal unpaired dinucle-
otide and adjoining hairpin with a short C/G-rich stem. Mutations introduced into the
similarly folded 5= end of the positive RNA (into either the unpaired AU end or the
hairpin’s stem) had significant adverse effects on genome replication, but three classes
of pseudorevertants were selected on passaging, containing various single-stranded
5=-terminal extensions rich in AUG or AU repeats, new heterologous stem-loops, or
mutations in several nonstructural proteins. Interestingly, compensatory mutations in
two nonstructural VEEV proteins were also observed after a detrimental (not fatal)
extended deletion of two stem-loops of another cis-acting replicative element located
not far from the beginning of the ORF (454). Truncation of the 5=-terminal nucleotides
of certain plant viruses with positive-strand RNA genomes is also not lethal and can be
repaired by various mechanisms, including recombination and nontemplated nucleo-
tide additions by the viral RdRP (455). The RNA of plum pox virus (a potyvirus) is started
with A4. This A4 sequence is regained after infection with engineered viral RNAs having
either one additional A residue or deletion of one or two A residues at this location
(456). It was suggested that the correction could occur during the synthesis of the 3=
end of the negative RNA rather than that of the 5= end of the positive strand, and thus
may involve one of the mechanisms of repair of 3=-terminal sequences considered just
below.

Various deletions and insertions in the 3= UTR as well as complete deletion of the
poly(A) tail may not kill alphaviruses (457–459), flaviviruses (460–462), coronaviruses
(463–465), and various plant viruses (466–469). The repair of the damaged genomes
may again involve different mechanisms, including RNA recombination, the use of the
viral RdRP- or host-dependent polyadenylation activities, and perhaps some others.

Circularization of flavivirus genomes through interactions between several comple-
mentary motifs located at both termini is important for viral reproduction (see refer-
ence 470 and references therein). Disruption of some such interactions resulted in a
fitness loss, which could be restored at least partially by spontaneous reversions or
second-site mutations leading to the restoration/rebuilding of the circularization po-
tential (470, 471).

In positive-strand RNA plant viruses that possess 3=-terminal tRNA-like structures
serving as important multifunctional cis-elements (472, 473), aminoacylation of this
element is involved in translation and/or replication of the genome, and this reaction
requires the presence of the 3=-CCAOH end. However, newly synthesized RNA molecules
of these viruses often terminate with 3=-CCOH. Repair of the functional structure is likely
accomplished by host enzymes, e.g., [CTP, ATP]:tRNA nucleotidyltransferases (474).
Various terminal and internal substitutions and deletions in this element may also be
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corrected through recombination between distinct components of the multipartite
viral genomes, and perhaps by other mechanisms (475–478).

Some plant viruses with positive-strand RNA genomes having non-tRNA-like ends
are terminated with the 3=-CCCOH sequence. This trinucleotide and adjacent sequences
are important for efficient genome replication, but if modified or even absent, they may
be spontaneously restored (479–482). The rehabilitation can be achieved by implemen-
tation of different mechanisms (483). In viruses with multipartite RNA genomes (which
sometimes have an additional, so-called satellite RNA), the damaged 3= terminus of a
genomic segment may be repaired by making use of another segment either as the
recombination partner or as the template for synthesis of a primer for the initiation of
the complement of the defective segment. Also, these viruses possess a functionally
important stem-loop structure close to the genomic 3= end. When the sequence of this
element was randomized and the resulting RNA was inoculated into susceptible plants,
viable viruses with a marked variety of structures of the relevant stem-loop were
selected (484). Truncation of 3=-terminal sequences might result in various rearrange-
ments at this end, such as additional deletions or acquisition of some foreign hetero-
geneous oligonucleotides, apparently arising through nonhomologous recombination
with internal parts of the positive or negative viral RNA strand (485, 486).

Negative-Strand and Double-Stranded RNA Viruses

The fidelity of replication of viruses with negative-strand RNA genomes appears to
be comparable to that of positive-strand viruses, varying among different representa-
tives of both groups (487), but the former recombine much less often, and for some of
them recombinogenic activity was not demonstrated at all (185, 488, 489). This may be
explained at least in part by the use of RNP rather than naked RNA as a transcriptional
template (490), which is expected to hamper the template switch and some other
mechanisms of formation of chimeric genomes. Nevertheless, true intermolecular
recombination in these viruses has continuously been demonstrated (491–499). The
error rate (487) and frequency of intermolecular recombination of viruses with double-
stranded RNA genomes are relatively low due to peculiarities of their replicative
machinery, but again, instances of natural recombination between them have been
reported (500–503).

An interesting example of regaining fitness after an extended in-frame deletion in
the coding region of the genome was documented for a spontaneous mutant of
influenza A virus (504). This mutant was missing 36 nt in the RNA segment coding for
the NS1 protein and exhibited ts and small-plaque phenotypes. Passages of this virus
in vitro or in vivo resulted in the generation of pseudorevertants with wild-type
properties, the restoration of which was traced to a single amino acid substitution in
the same protein without regaining the lost sequence. It was hypothesized that this
substitution permitted generation of an alpha-helix element in the NS1 structure,
compensating for the deletion-caused loss of the original alpha-helix.

The deficiency caused by a mutation in one viral protein in some cases can be more
or less compensated by alterations in other viral proteins. For example, the matrix (M)
protein of vesicular stomatitis virus (VSV) has an anti-interferon activity. Deletion of
Met51 in this protein rendered the virus interferon sensitive and markedly suppressed
its reproduction (505). The fitness was partially restored upon serial passages, and this
improvement was attributed to two factors: mutations in another viral protein, phos-
phoprotein (known to exhibit anti-interferon activity in the rabies virus but not in VSV),
and interferon-sensitive members of the quasispecies, which were complemented by
their interferon-insensitive counterparts (506). Introduction of 1,378 synonymous mu-
tations in the ORF of the L (RdRP) gene of human respiratory syncytial virus (a
pneumovirus) rendered the virus highly temperature sensitive (507). However, passages
of its different lineages at stepwise increasing temperatures resulted in the selection of
multiple, less-debilitated variants with mutations in various other viral proteins (in 9 of
the 11 ORFs) and also in the intergenic regions. The most significant compensatory
effects were traced to each of the two alternative amino acid changes in the viral M2-1

Agol and Gmyl Microbiology and Molecular Biology Reviews

June 2018 Volume 82 Issue 2 e00067-17 mmbr.asm.org 26

http://mmbr.asm.org


antiterminator protein, but the level of rehabilitation could be increased further by
combinations of these mutations with alteration in other proteins.

In certain families of viruses with negative-strand and double-stranded RNA (as well
as positive-strand RNA), the genomes are composed of several distinct molecules. Such
viruses possess an additional rehabilitation tool, reassortment, i.e., exchanges of indi-
vidual genomic segments between coinfecting viruses (508).

Additional examples of the capacity of RNA viruses to cope with deleterious
alterations of their genomes can be found in the review of Barr and Fearns (292).

TO RUN AHEAD, IT IS SOMETIMES USEFUL TO STUMBLE

As we have repeatedly described above, the genomes of RNA viruses are able to
maintain their identity under constant conditions despite a significant infidelity of their
replicative machinery. In contrast, debilitated genomes are quite unstable. The reason
is quite obvious: replication errors are unlikely to increase the fitness of well-adapted
viruses but have a much higher chance of being advantageous for weak ones, and the
weaker the viruses are, the more different possibilities they have for becoming stronger.
To allow them to exploit these possibilities and to fix even slightly advantageous
genetic changes, it is necessary not to have more efficient competitors. The invalid
viruses very attentively investigate a broad repertoire of options generated by error-
prone replication. Point mutations and recombination create a rich swarm of variants,
which can follow various evolutionary trajectories. In other words, low-fit viral popu-
lations are inherently metastable.

On the one hand, instability opens an array of opportunities for a debilitated virus
to regain a wild-type-like genome and thus retain its identity. On the other hand, an
important corollary of metastability is a significant potential for the acquisition of
qualitatively novel genetic elements, ensuring new phenotypic properties. This consti-
tutes an important basis for viral macroevolution, i.e., generation of novel taxa. Essen-
tially the same events occur if low fitness is caused by changed environmental
conditions, e.g., host changes. Indeed, cross-species transmission appears to be a major
factor of evolution of RNA viruses (509). A schematic model of these processes is
presented in Fig. 7.

Thus, to run ahead, it is sometimes useful to stumble.

ROBUSTNESS, RESILIENCE, AND EVOLVABILITY OF VIRAL RNA GENOMES

The data discussed above illustrate that the maintenance of the genetic and
phenotypic identity of RNA viruses, despite the infidelity of their replicative machinery,
is principally based on two fundamental properties: robustness and resilience. Robust-
ness can be defined as “the invariance of phenotypes in the face of perturbation” (510).
In the coding regions of the genomes, it is based primarily on the codon degeneracy

FIG 7 Model of macroevolution of RNA viruses.
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and neutral character of many amino acid substitutions. The robustness of RNA
cis-elements is due largely to the degeneracy of RNA spatial structures, i.e., the ability
of diverse sequences to maintain, stably or temporarily, similar mutual orientations, as
well as the phenotypic neutrality of alterations of certain nucleotides involved in the
interactions with specific ligands.

On the other hand, a large proportion of mutations in both coding and noncoding
regions of the viral RNA have more or less adverse effects. One may define robustness
more broadly and loosely as the capacity to survive in the face of perturbations. As we
have seen, certain conserved elements of the IRES and viral proteins can be damaged
without a loss of viability. Even all the three key replicative RNA cis-elements of
picornaviruses (oriL, cre, and oriR) and the conserved poly(A) tail may not be indispens-
able for viability. However, in apparent contradiction with this fact, various alterations
in these elements were reported to be lethal (52, 119, 121, 136, 341, 511, 512). This
discrepancy may represent a manifestation of a significant rule formulated by the
Russian author Ilya Il’f: “A watchman was known to check passes very carefully, but
those who had no passes at all were allowed to go unquestioned and freely.” Thus, it
may sometimes be better to have no pass (e.g., a cis-element) at all than to have a
wrong one (513). An explanation of this paradox may consist of the supposition that a
complete lack of presumably essential genetic elements may not fully and uncondi-
tionally prohibit the relevant wild-type reaction but rather may dramatically decrease
its efficiency, directing the process along a different pathway, for example, requiring
another protein cofactor or not requiring some normally important protein participants
at all. As a result, debilitated viruses can survive. For those with “wrong passes,” such
pathways may be prohibited.

Numerous tools are at viral disposal for the restoration of diminished fitness, and the
relevant capacity may be called resilience (52) or reparability. Rehabilitation can be
achieved by either repair of the injured elements or (“plan B”) the compensatory
modification of another viral element. In both instances, the same mechanisms as those
that caused debilitation are implemented, i.e., infidelity of the replicative machinery
(mutations and recombination). The fixation of the “cured” genome is achieved by
selection.

The resilience mechanisms may serve two opposite evolutionary trends. On the one
hand, they may result in the full or nearly full restoration (conservation) of the original
genome structure and/or phenotype. On the other hand, they are very powerful factors
contributing to viral evolvability. Indeed, stepwise acquisition of small improvements
upon wandering along rugged fitness landscapes (514), especially in the absence of
stronger competitors, may produce a remarkably broad menu of more-fit mutants able
to satisfy various viral “tastes” and hence be a major tool for gaining qualitative
novelties. The fixation of the achieved results is done by selection, which in both its
forms (negative and positive) is one of the key factors contributing to the conservation
and evolvability of RNA genomes.

The relationships between mutation rates, quasispecies, robustness, and evolvability
of RNA viruses are discussed in detail in numerous publications (487, 515–526). This
problem is closely related to the emergence/reemergence of pathogenic viruses, which
has recently become a hot topic (527–532).

Obviously, the regularities discussed in this review are important not only for a
deeper understanding of certain fundamental aspects of the lifestyle of RNA viruses but
also for numerous applied problems, such as the efficiency of antiviral tools and the
development of drug resistance (533–537).
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